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Abstract—A comprehensive theoretical treatment is given of the dynamic interaction between a
main crack and an arbitrarily located and oriented microcrack near its tip under antiplane loading.
The theoretical formulations governing the steady-state problem are based upon the use of integral
transform techniques and an appropriate superposition procedure. The resulting singular integral
equations are solved numerically, using Chebyshev polynomials, to provide the dynamic stress
intensity factor at the main crack at different loading frequencies. The resulting solution is verified
by comparison with existing results and numerical examples are provided to show the effect of the
location and orientation of the microcrack and the frequency upon the dynamic stress intensity
factor of the main crack.

1. INTRODUCTION

The interaction of cracks with microcracks plays an important role in the mechanics and
micromechanics of fracture in quasi-brittle solids such as concrete, rock and ceramics.
Existing work in the literature suggests that the presence of these defects ultimately governs
the overall failure mechanism of these solids; see, for example, Hoagland ez al. (1973,
1980), Claussen et al. (1977), Evans and Faber (1984) and Ruhle et a/. (1987). Indeed, an
accurate assessment of the toughness of such materials would necessitate the determination
of the influence of these microdefects upon the crack-tip stress field.

Two approaches are generally considered in modelling the quasi-static interaction
problem. The first utilizes the mechanics of continuum damage to model a zone in the
vicinity of the main crack. In this case, the damage zone is described on the basis of
phenomenological constitutive equations different from that corresponding to the behavior
of the original material (Krajcinovic, 1985; Ortiz, 1987 ; Hutchinson, 1987). The second
relies upon the use of a fundamental micromechanics approach to model multiple discrete
microdefects near the tip of the main crack (Kachanov, 1987; Rose, 1986 ; Meguid et al.,
1991 ; Gong and Meguid, 1991).

In spite of the fact that the quasi-static main crack—microcrack interaction problem
has received considerable attention, only a very limited number of articles treat the dynamic
interaction between collinear or parallel cracks; see, for example, Jain and Kanwal (1972),
Ttou (1980), Gross and Zhang (1988), Zhang and Achenbach (1989) and Zhang (1992).
This may be due partly to the difficulties associated with the formulations resulting from
the dynamic equations and partly to the scarcity of experimental data. It is important to
note, however, that most advanced composite materials are currently being used in situ-
ations involving dynamic loading rather than static ones.

It is therefore the objective of this paper to provide a steady-state solution to the
dynamic interaction between a main crack and an arbitrarily located and oriented micro-
crack subjected to different loading frequency. The analysis is based upon the use of
Fourier integral transforms and an appropriate superposition procedure using Chebyshev
polynomials. Two aspects of the work are accordingly examined. The first is concerned
with determining the effect of the loading frequency upon the resulting dynamic stress
intensity factor, while the second is associated with the possible shielding and amplification
effects observed in the equivalent static problem.

The general layout of this article is as follows: Section 2 provides the general for-
mulation of the problem, while Section 3 is devoted totally to the analysis of results and
discussions. Section 4 concludes the paper.
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2. FORMULATION OF THE PROBLEM

2.1. Decomposition into subproblems

The situation envisaged is that of an elastic infinitely extended isotropic solid containing
a main crack and an arbitrarily located and oriented microcrack under steady-state dynamic
antiplane loading, as shown in Fig. 1. The main crack is assumed to be semi-infinite, which
corresponds to the assumption that the length of the main crack is much larger than the
length of the microcrack 2a and the distance between the main crack and the microcrack.
Two rectangular coordinate systems (x, y) and (&, ) are employed at the semi-infinite main
crack and the microcrack, respectively. Let the distance between the main crack-tip and the
centre of the microcrack denoted 4 and the inclination angle measured from the x-axis to
the centre of the microcrack 6. The microcrack orientation angle ¢ is measured from the
x-axis to the £-axis.

The displacement, strain and stress fields corresponding to a steady-state dynamic
loading can be expressed in terms of the frequency  as

A*(x, v, 1) = A(x, p) e, (1)

where A* represents the desired field variable. For the sake of convenience, the time factor
exp (iwt) will be suppressed and only A(x, y) will be considered.

The solution to the current dynamic problem is obtained by superimposing three
subproblems, each of which contains either the main crack or the microcrack. In subproblem
I, the main crack is subjected to the applied dynamic shear stress which results in a shear
stress field at the microcrack site. In subproblem II, the presence of the microcrack in the
infinite body results in a shear stress distribution at the main crack site. In subproblem III,
the main crack surfaces are subjected to an equal and opposite shear stress experienced in
subproblem II. This stress field will again introduce a shear stress distribution at the
microcrack site which should be added to the field corresponding to subproblem II. This
iterative process is repeated until it converges to the “exact” solution of the problem. The
formal representation of the above approach is described below.

In subproblem I, the externally applied dynamic loads result in the following stress
field

Tp = Ky -COS (g) +p,cos(B)+psr'?cos <37B) +parcos 2B)+ - - - (2)
2nr

T,.= — KL sin (p—) +p,sin(B)+psrisin (313) +parsin Q)+ - (3)
\/2nr 2 2

at a point (7, f) in the neighbourhood of the main crack tip, with K, being the applied
stress intensity factor and p,, ps, . .. are parameters corresponding to the higher order terms
of the stress field. The use of higher order terms in (2) and (3) was motivated by the
knowledge that the stress field at the microcrack site is not merely governed by the singular
stress field at the main crack (Gong and Meguid, 1992).

Fig. 1. Arbitrarily located and oriented microcrack near the tip of a main crack.
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Consequently, the shear stress 7,(£) along the microcrack site can be described in terms
of the undisturbed stress field as being

71(5) = yz(rs ﬁ) COSiﬁ“—Tx,(}‘, ﬁ) 31n¢‘ (4)

with
Tyz(r* ﬂ) = r,;(r, ﬁ) sin ﬁ+ ng(r, B) Cos ﬂ (5)

and
T.t:(r: 6) = ‘t,z(.", ﬁ) €08 B_ Tﬁz(r’ ﬁ) sin Ba {6)

where

r=.x*+y%, p=arctan (::;) D

and

x = decos () +&cos(¢), y=dsin(8)+Esin(g). 8

In subproblem II, the microcrack is subjected to —r,; and its elastodynamic behaviour,
under steady-state antiplane deformation, is governed by the following equation (Achen-
bach, 1973)

Pw Pw  w?
@t tav=" ©

where w, @ and ¢ are the displacement, the frequency and the velocity of the transverse
wave of the material, respectively. The non-vanishing shear stress components are

Ty = G'(?"M")’ Tee = G%g’

n (10)

where G is the shear modulus of the material. By making use of Fourier transforms (see
the Appendix for details), the general solution of the wave equation (9) can be expressed
in terms of the following Fourier integrals

w(&,n) = sgn () L A() e ds, (1

s v}

aA(s)e -t dg, (12)

142(59 ’?) = "GJ

(¢ = —iGsgn(n) [ i sA(s) e~ ds, (13)

where
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I, >0

A

In the above equations, A(s) is an unknown function of s, and « is given by
a=_[s’—— with Re(x)=0 (14)

which ensures that the stress field induced by the microcrack satisfies the boundary con-
ditions of the problem at infinity.
By introducing the following dislocation density function

ow(¢,0)

f&)= 2 (15)
the unknown function 4(s) can be found as
A@s) = — Z@ (16)
where
|
7@ =5 Lf(é)e de )

is the Fourier transform of f(¢). Substitution of eqns (16) and (17) into eqns (11)—(13)
yields

w(é,n) = — §_g_2nn(1_?1) J_oo f(w) J'i; .‘];cis(u—ﬁ)frxl'll ds du (18)
Gl = — o r @ f % gste=0 -2 ds du (19)
N e 0)

The microcrack is subjected to the following boundary conditions
w(&,0 =0, [¢l>a; 1,:0)=-1() Il<a (21)

By using eqns (18) and (19) in (21), the above boundary conditions can be expressed in
terms of the following singular integral equations

'[ f(“é Jf(u)j [——1]sin[s(u—é)]dsdu=—%rl(é), 6l <a (22)

and

ja f(u)du=0. (23)
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Equations (22) and (23) can be solved by expanding f(x) using Chebyshev poly-
nomials; as follows :

f) = S 7, (g) , 24)
j=0

where T; are Chebyshev polynomials of the first kind and ¢; are unknown constants. From
the orthogonality conditions of the Chebyshev polynomials, eqn (23) reduces to ¢, = 0.
Substituting (24) into (22) and making use of the following relations (p > 0)

r1 o2 . d {0 k=2n 25
] (1 —u®)" " T () sin (pu) du = (=)'l (p) k=2n+1 (25)
r 0 k=2n+1

) (1—u*)~"2T(u) cos (pu) du = {(_1),,an(1)) k=2 (26)

with J, being Bessel functions of the first kind ; the following algebraic equation for ¢; is
obtained

ke o}

2 U (é) + _i 698 = —1(D/G, Kl <a, @n

i=1

where U represent Chebyshev polynomials of the second kind with

(=D J“” (g — 1),};(551) cos (s&) ds, j=2n+1
90 = ’ (28)

(- l)(n+1)aJ'°° (g ,_,l)Jj(sa) sin(s&) ds, j=2n.

If the Chebyshev polynomials in eqn (24) are truncated to the Nth term and eqn (27) is
satisfied at N collocation points given by

/
§,=acos(mn), I=12,...,N 29

then eqn (27) reduces to the following linear algebraic equations

in( Jin )
SN+l »

—lcj—(‘Tﬂj Z cjgj(fl) = _t!(él)/G’ Jsl= 1,2,...,N. (30)
sin

J jn =1

N+1

The solution for ¢; (=1, 2, ..., N) can be obtained from these equations. Once c; are
determined, the stress distribution resulting from the presence of the microcrack can be
expressed as
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o
N (— I)"f ;Jj(sa) cos (s&) e ds, j=2n+1
Q
(& =Gay ¢ b
—1 &
T f ZJj(sa)sin (s¢) e~ s, j= 2
0

and

N (— 1)‘"“)[ Ji(sa)sin (s¢)e " ds, j=2n+1
rf:(éa '7) = Ga sgn (77) Z ¢ °

(32)
@ | 2]
j (- 1)"'{ J,(sa) cos (s&) e~ ds, j=2n
L]

Let us now focus our attention to subproblem I1I, where the stress field at the main
crack, resulting from the microcrack, can be expressed as

(%) = 1 [E(x), ()] sin ¢+ 7, [E(x), 7H(x)] cos ¢ (33)

with
E(x) = (x—dcos 8) cos ¢ +dsin B(cos p+1) - °:lf 3 (34)

and
7i(x) = (dcos 0—x) sin ¢ —dsin fcos ¢. (35)

It is now appropriate to free the main crack from the induced shear stress by applying
— ¥ (x) to its surfaces. Knowledge of the solution for the transient mode III semi-infinite
crack problem (Freund, 1990) leads to the development of the following expression of the
stress field for the steady-state case

£ (1, 0) = 2 ffr T g, (36)
\/ Tr \/;1(r+u)

* ( u) -—lu
I»ﬁL ke dy, (37

where k& = w/c is the wave number, K, is the first-order effect of the microcrack on the
stress intensity factor of the main crack.

2.2, Superposition of subproblems
Equation (36) can be expressed in an expanded form as follows:

1,:(r,0) = 74.(r,0) = ayr " by tasr P bagrt - (38)

which if compared with eqn (2) gives
2nay, py=05 pyi=05, pi=ogcc. (39)
Accordingly, the stress field of the main crack for the next iteration can be obtained

from eqn (2) with K, and p,, ps, ... being replaced by K, and pb, ph, ..., respectively.
In fact, the stress field of the main crack in eqn (2) is governed by the stress parameters



Dynamic interaction of a microcrack under loading 1091

Dis P2y P3, ..., With p; = KO/\/27L Generally, only a finite number of terms involving
Pi> P2 -+-> Pm Will be used to achieve a desired accuracy. In view of the linear elastic
property of the system, the relation between the stress parameters for different iteration
orders can be expressed as

Jj+1

4 % %y e Oy J
! — Xy Oy ... Oopm P (40)
piﬁ- : L L2 cer Oy P{n

where p{ (I =1, 2, ..., m) are the stress parameters of the main crack with j being the

order of iteration and [«] being the coefficient matrix which is governed by the geometric
and the frequency conditions of the problem.
The iterative solution of (40) leads to

P =[P’ (41)

where p’ and p° are the stress parameters for jth and the initial iterations, respectively. The
final result of the stress parameters p can thus be obtained using the following sum

p=p’+p'+p*+p+ -+ P+ (42)
which can be expressed in terms of [a] as
p =+ +[07+ - + [+ " 3)

Since the eigenvalues of matrix [«] are less than one, then the sum of (43) can be rewritten
as

p=qp’, (44)

where

q==>I-[))". (45)

If the initially applied stress intensity factor at the main crack is Ky (p, = Ky/</27; p; =0,
I > 1), then the stress intensity factor at the main crack tip in the presence of the microcrack
is given by

Ky=quK, or K*=-_—"=gq,,. (46)

3. RESULTS AND DISCUSSION

This section is divided into two main parts. The first deals with the verification of the
resulting solutions and the second with examining the effect of the pertinent parameters
upon the stress intensity factor at the main crack.

The following forms of solutions were utilized in the determination of the normalized
stress intensity factor of the main crack :

(i) the first-order solution, KV = 1+,
(ii) the singular field solution K*" = 1/(1 —a,,) and
(iii) the higher order solution, K* = q,, with q = (I—[a]) ..
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Table 1. Normalized quasi-static stress intensity factor at the tip of the main crack
Ky /K, as a function of location a/d for 8 = ¢ = 90

Gong and Meguid {1991) Present resuit

aid First order Second order |+, AT —2%,,) q

0.0 1.000 1.000 1.000 1.000 1.000
0.1 [.001 1.001 1.001 1.001 L.OOI
0.2 1.005 1.005 1.003 1.003 1.003
0.3 1.011 1.012 1.006 1.006 1.006
0.4 1.020 1.023 1.011 Lot 1.012
0.5 1.031 1.03% 1.021 1.021 1.022
0.6 1.045 1.060 1.038 1.039 1.040
0.7 1.061 1.089 1.067 1.072 1.074
0.8 1.080 [.128 1.119 1.136 [.142
0.9 1.101 1.177 1.233 1.304 1.333

First, we restrict our attention to the static case (w = 0) for which a general solution
has been found by Gong and Meguid (1991) using the complex variable method and
Laurent series expansion. The results of the normalized stress intensity factor of the main
crack given by Gong and Meguid are compared with the results of the present solution in
Table | for 8 = ¢ = 90", In addition, comparison is also made in Table 2 with the special
case of collinear cracks for which an exact solution exists (Chiang, 1986). These tables
reveal that: (i) the accuracy of the solution is governed by the relative position of the
microcrack, a/d, and (ii) a maximum discrepancy of 5% is observed if the number of
Chebyshev polynomials in eqn (24) was restricted to eight and the number of stress
parameters in egn (40) to four. even for the case where a/d = 0.9.

Furthermore, the accuracy of the solution was verified using the case of a single crack
subjected to a uniform harmonic shear stress developed earlier by Gross and Zhang (1988).
Figure 2 shows an excellent agreement between the present solution and those of Gross
and Zhang in which the normalized dynamic stress intensity factor was defined as being
K = K,;/K}y. with K}, being the corresponding static stress intensity factor and ka the
normalized wave number. For the remainder of this paper, only the higher order solution
will be considered in the analysis of results.

Consider now the case of an arbitrarily located and oriented microcrack ahead of the
main crack. The present formulations predict the dependence of the normalized stress
intensity factor upon the location (a/d, #) and orientation of the microcrack (¢) and the
frequency (w). It should be recognized that the dynamic stress intensity factor produced by
a time-harmonic loading is in general a complex quantity. For convenience, only the
amplitude of the normalized complex dynamic stress intensity factor |[K*| is considered in
the following figures.

Figure 3(a) shows the variation of |K*| with the frequency for different «/d for the
collinear crack case. The figure shows that |K*| attains a maximum amplitude at zero
frequency. However, as the normalized wave number ke« increases and reaches 1.5, the

Table 2. Normalized quasi-static stress intensity factor at the tip of the main crack Ky/K, asa
function of location a/d for collinear cracks

Gong and Meguid (1991) Present result

a'd Exact First order Second order by, bl - ¢,

0.0 1.000 1.000 1.000 1.000 1.0060 1.000
0.1 1.003 1.003 1.003 1.002 1.002 1.002
0.2 1.010 1.010 1.010 1.007 1.009 1.009
0.3 1.024 1.022 1.024 1.017 1.022 1.021
0.4 1.046 1.040 1.045 1.034 1.043 1.042
0.5 1.077 1.063 1.074 [.060 1.076 1.073
0.6 1.123 1.090 [.113 1.099 1.129 112
0.7 1.195 1.123 1.166 1.161 1.221 1.195
0.8 1.319 1.160 1.234 1.266 1.413 1.331

0.9 1.591 1.203 1.320 1.492 2,103 1.678
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15 T T T T

—— Current Study
O Gross et al. (1988)

0.5

0.0 , . . .
0.0 2.0 4.0 6.0 8.0 10.0
ka

Fig. 2. Verification of present solution for a crack under dynamic loading.

normalized stress intensity factor |K*| decreases rapidly and approaches unity. Similar
behaviour was observed for other cases corresponding to arbitrarily located and oriented
microcracks ; as shown, for example, in Fig. 3(b) for the case 8 = ¢ = 90°. Figures 3(a)
and 3(b) indicate that the effect of the microcrack in the current configuration is significantly
reduced at higher frequencies.

1.8 . . .
—— ad=039
L a/d=0.8 i
---- ald=07
——- a/d=05
1.4 -
x
<
12k
10 t
(a) 0.8 . . X
0.0 2.0 4.0 6.0 8.0
ka
-——— a/d=09
W e a/d = 0.8
----ald=07 y
: ——- ald=05 T

IK*|

0.0 2.0 4.0 6.0 8.0
ka

(b) 0.80 L

Fig. 3. Variation of normalized dynamic stress intensity factor K* versus normalized wave number
ka for different locations of microcrack a/d: (a) @ = ¢ = 0° and (b) 8 = ¢ = 90".
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0.0 50.0 100.0 150.0

14 F ]
—
X
—— ka=0.0 N
T ka=0.5
----ka=1.0 ANY
——-ka=1.5 RN
10 b e - e
(b) 0.8 . .
0.0 50.0 100.0 150.0

Fig. 4. Effect of microcrack inclination # upon the dynamic stress intensity factor K* for different
frequencies: (a) a/d = 0.7 and (b) a/d = 0.9.

Figures 4(a) and 4(b) show the variation of |K*| with the inclination angle 6, which
is taken to be equal to the orientation angle of the microcrack ¢, for different normalized
wave number ka for two values of a/d. For a/d = 0.7 (Fig. 4a), the lower frequency range
ka < 1 results in a decrease in |K*| with increasing 6 ; | K*| approaches the static solution
when ka = 0. For ka > 1, |K*| increases with a decreasing 8 and remains almost constant
when ka = 1. However, for a/d = 0.9 (Fig. 4b), higher interaction effects are in evidence at
frequencies ka < 1 and |K*| approaches unity as ka increases to 1.5.

The effect of the microcrack orientation ¢ is examined in Figs 5(a) and 5(b). In Fig.
5(a), the left tip of the microcrack (n =0, £ = —1) is located at y = 0 and x = e, and the
stress intensity factor for e = 0.25q is plotted as a function of ¢. The figure indicates that
little change occurs with increasing ¢ up to 1357 at which a rapid change in |K*| occurs.
Figure 5(b), which relates to the case where the left tip of the microcrack is located at y = e
and x = 0, identifies the importance of frequency upon both shielding and amplification
effects experienced by the main crack due to the presence of the microdefect.

It is worth pointing out that the normalized stress intensity factor |K*| presented in
Figs 3-3 represents a dynamic amplification ratio of the stress intensity factor as a result
of the presence of the microcrack. Since the effective stress intensity factor | K| is described
in terms of |K*| and |K,]|, then the dynamic overshoot phenomenon, observed for a single
crack (Fig. 2), will be governed by the behaviour of |K,|. Figure 6(a) shows an example of
the variation of the normalized dynamic stress intensity factor of the main crack |K,|/K,
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a X L 1 L
@) 0 oo.o 50.0 100.0 150.0 200.0
1.8+ 1
——— ka=0.0 |
LA L W ka=0.5
---- ka=1.0
45 : ~-- ka=15
13- b
X
11 1
0.9 + 1
07 b 4
(b) . ;
-100.0 0.0 100.0 200.0

o

Fig. 5. Effect of microcrack orientation ¢ upon the dynamic stress intensity factor K* for different
frequencies: (a) efa =025 e =dcos B#—acos ¢ and (b) e/a =025 e =dsin —asin ¢.

as a result of a distributed and concentrated harmonic load acting on its surface, such
that 7,.(x,0) = —tH(x+/y) +po(x+1,), where H is the step function, ¢ is the delta function
and K, is the corresponding static stress intensity factor. The interaction of the above main
crack with a collinear microcrack is shown in Fig. 6(b) for the case where a/d = 0.9,
tlo/p = 1.0 and K| being the corresponding static result. These figures depict three important
features: (i) the dynamic stress intensity factor attains a maximum value which exceeds
that corresponding to the static case (dynamic overshoot), (ii) dynamic overshoot is
also observed in the case involving a collinear microcrack interacting with a main crack,
and (iii) the increase of the length of the collinear microcrack reduces the overshoot
phenomenon.

4. CONCLUDING REMARKS

A general solution is provided to the dynamic interaction of a main crack with an
arbitrarily located and oriented microcrack under antiplane loading. The analysis is based
upon the use of integral transform techniques coupled with a self-consistent iterative
procedure using Chebyshev polynomials.

The validity and versatility of the present solution have been demonstrated in a unified
manner by application to some specific examples. Furthermore, the effect of location and
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6.0 ( T T T

—— t/p=07
— t/p=1.0
------ tfp=13
----dp=15
——-d/p=20
—-— t/p=25

4.0 +

[K 17K

20

3.0

(b) oo . . .
0.0 20 4.0 6.0 8.0

Fig. 6. Normalized stress intensity factor versus frequency for (a) a semi-infinite main crack under
mode I loading, and (b) a main crack interacting with a collinear microcrack.

orientation of the microcrack and the frequency upon the dynamic stress intensity factor
of the main crack are examined and discussed.
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APPENDIX

The Fourier transform used in this paper is defined as

1 X X w0
7 =ﬁf_ f@e=dx, £ = j J(sye s (AD

The following results are used in calculating the integrals corresponding to eqns (31) and (32)

a* cos (Ak — %)

J; Je(as)cos (s|x|) e~ ds = [( 5] )2 ( 18] )2:|u/z’ (A2)
R | Rcos— +|y| ] +| Rsin— +|x|
2 2
. —a*sin (Ak— %)
f Ji(as)sin (s)x[) e ¥ ds = (A3)

B 2 272
R [(Rcoslz—| + |y|> +(Rsin%g-| + |x|>:|

R= ‘t\/(yz—x2+az)2+4xzy2

where

2_yiy g4
B=— arooosy—Rii—
B
Rsin|2—|+|x|
A= —arctan—lBl—w.
Rcos— +{y|
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